Copyright notice

- These items are protected by copyright and/or related rights.
- Presentations and educational materials are owned by the author and are for educational use only.
- Reproduction and downloads are permitted only for personal use.
- For other uses, you must obtain permission from the author/rightsholder(s).
- The mass reproduction, distribution, and sale of any materials from this website is prohibited.
- The name "The Nebraska Asthma Coalition" "NAC" and associated names, logos, trademarks, and design elements displayed on the website are owned by the Nebraska Asthma Coalition.
- The Nebraska Asthma Coalition does not assume responsibility for the information presented.

1

HANA NIEBUR, MD, FAAP, FAAAAI ASSISTANT PROFESSOR OF PEDIATRIC ALLERGY/IMMUNOLOGY CHILDREN'S NEBRASKA/UNIVERSITY OF NEBRASKA MEDICAL CENTER

Disclosures Marketing Advisory Board for Enzyvant Primary Investigator for a clinical research trial site with AstraZeneca

4

3

Clinical Evaluation Based on Endotype

T2 HIGH: ALLERGIC

Peripheral eosinophilia

Elevated serum IgE

Positive environmental allergy testing (skin prick, specific IgE)

Elevated FeNO

Sputum and BAL eosinophilia

T2 LOW: NON-ALLERGIC

Absence of T2 high markers Peripheral neutrophilia Sputum and BAL neutrophilia Elevated BMI Smoking status

9

Treatment Approaches Based on Endotype

T2 HIGH

Guidelines-based asthma therapy

Environmental control of allergic disease

Biologic therapy targeting the allergic pathway

Allergen immunotherapy

T2 LOW

Evaluation and treatment of co-morbidities

- OSA
- GERD
- Obesity
- Smoking cessation

Tiotropium

Macrolides

Limited biologic therapies

eature	T2-"high"	T2-"low"
Age of onset	Earlier onset	Later onset
Symptoms	May be significant	May be significant
ife-threatening exacerbations	More exacerbations	Fewer exacerbations
Obesity/metabolic dysfunction	May be present	Often present
Lung function	More obstruction	Less obstruction
Short-acting bronchodilator response	More responsive	Less responsive
ergic sensitization	Present	Absent
Exhaled nitric oxide	Normal to elevated	Low to normal
Airway eosinophilia	Present	Absent
Airway neutrophilia	May be present	May be present
Medication requirements	More responsive to	Less responsive to
	corticosteroids	corticosteroids

Future Directions

Cytokine profiling

Biomarkers: periostin, EPX,

Increased utilization of bronchoalveolar lavage

Microbiome evaluation and manipulation

Obesity management

Genetic testing

Biologic therapies

13

References

Akar-Ghibril, N et al. Allergic Endotypes and Phenotype of Asthma. The Journal of Allergy and Clinical Immunology: In Practice, Volume 8, Issue 2, 429-440. (2020). Conrad, L.A., Cabana, M.D. & Rastogi, D. Defining pediatric asthma: phenotypes to endotypes and beyond. *Pediatr Res* 90, 45–51 (2021).

Coverstone, AM et al. Diagnosis and Management of T2-High Asthma. The Journal of Allergy and Clinical Immunology: In Practice, Volume 8, Issue 2, 442-450. (2020).

Fitzpatrick, AM et al. T2-"Low" Asthma: Overview and Management Strategies. The Journal of Allergy and Clinical Immunology: In Practice, Volume 8, Issue 2, 452-463. (2020).

Fuhlbrigge A.L., Castro, M. Precision Medicine in Asthma—Using Phenotypes to Understand Endotypes That Lead Us to New Therapeutic Options. The Journal of Allergy and Clinical Immunology: In Practice, Volume 8, Issue 2, 496 – 497 (2020)

Gonzalez-Uribe V, Romero-Tapia SJ, Castro-Rodriguez JA. Asthma Phenotypes in the Era of Personalized Medicine. J Clin Med. 2023 Sep 26;12(19):6207.

Just, J. et al. Clinical phenotypes in asthma during childhood. Clin Experimental Allergy 47, 848-855 (2017)

Kaur, R et al. Phenotypes and endotypes of adult asthma: Moving towards precision medicine. Journal of Allergy and Clinical Immunology, Volume 144, Issue 1, 1 – 12 (2019).

Kelly A, Lavender P. Epigenetic Approaches to Identifying Asthma Endotypes. Allergy Asthma Immunol Res. 2024 Mar;16(2):130-141. doi: 10.4168/aair.2024.16.2.130.

Kermani N, Versi A, Gay A, Vlasma J, Jayalatha AKS, Koppelman GH, Nawijn M, Faiz A, van den Berge M, Adcock IM, Chung KF. Gene signatures in U-BIOPRED severe asthma for molecular phenotyping and precision medicine: time for clinical use. Expert Rev Respir Med. 2023 Jul-Dec;17(11):965-971.

Ricciardolo, Fabio LM et al. Phenotype overlap in the natural history of asthma. European Respiratory Review 2023; 32(168): 220201.

Salehian S, Fleming L, Saglani S, Custovic A. Phenotype and endotype based treatment of preschool wheeze. Expert Rev Respir Med. 2023 Jul-Dec;17(10):853-864.

van Beveren GJ, Said H, van Houten MA, Bogaert D. The respiratory microbiome in childhood asthma. J Allergy Clin Immunol. 2023 Dec;152(6):1352-1367.

Wenzel, S. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 18, 716–725 (2012)